

GAS DETECTION FOR SEMICONDUCTOR & PHOTOVOLTAIC INDUSTRY

Maximum Safety

More than 65 years of experience and a strong proven track record with respect to solutions for gas detection.

Monitoring of:

- Tools
- VMB (Valves Manifold Box)
- Pumps and basements
- Scrubbers
- · Gas cabinets and storage areas
- Cleanroom environment

Fixed detection

SH-WAD/CDS	
Single point, multi point and multi	ti gas detectors with cartridge sensors.
Ranges	From ppb to %vol (please refer to table on backside)
Detection method	Sample draw
Power supply	24 VDC
Output	Options: 4 - 20 mA, Profibus DP, Modbus, SIMS and relays
Provision for	Pyrolyzer

PS-7	
Single point gas detector with a	cartridge sensor.
Ranges	From ppb to %vol (please refer to table on backside)
Detection method	Sample draw
Power supply	24 VDC
Output	Options: 4 - 20 mA, Modbus TCP/IP
Provision for	Pyrolyzer

SH-WAD - TEOS		SH-WAD - CO
Single point gas detector for TEC	OS and CO.	
IPA compensated	Prevents alarms caused by IPA	
Ranges	0 - 30 ppm	0 - 150 ppm
Detection method	Sample draw	
Power supply	24 VDC	
Output	Options: 4 - 20 mA, Profibus DI	P, Modbus, SIMS and relays

TX-KFP

Single point gas detector. Ideal f	for safety extract (exhaust) monitoring applications.
For example monitoring of gas of	abinet extracts.
Ranges	From ppb to %LEL (please refer to table on backside)
Detection method	Diffusion type
Power supply	24 VDC
Output	4 - 20 mA
Optional	Sensor protector for environment monitoring applications
	Local indicator

KS-70	
Single point gas detector for	r monitoring oxygen levels.
Ranges	0 - 25% / 0 - 50%
Detection method	Diffusion type
Power supply	24 VDC
Output	4 - 20 mA, relays for A1, A2 and fault
Optional	Remote sensor box

KS-7D	
Single point gas detector for the	ne detection of CO.
Ranges	0 - 150 ppm / 0 - 250 ppm / 0 - 400 ppm
Detection method	Diffusion type
Power supply	24 VDC
Output	4 - 20 mA, relays for A1, A2 and fault

KS-7R	
Single point gas detector for th	ne detection of CO ₂ .
Range	0 - 5000 ppm
Detection method	Diffusion type
Power supply	24 VDC
Output	4-20mA, relays for A1, A2 and fault

Portable detection

XPS-7 II	
Portable gas detector for toxic	and corrosive gases including NF ₃
Range	From ppb to ppm (please refer to table on backside)
	Detects a range of gases with a single-gas detector by
	replacing the sensor unit
Detection method	Sample draw
Power supply	4 x AA type batteries (up to 12 hrs.) or AC adapter
XP-703D III	
Portable leak tester for the det	ection of semiconductor gases like arsine (AsH ₃), phosphine
(PH_3) , diborane (B_2H_6) , silane (S	SIH_4) and hydrogen (H ₂).
Range	ppm
Detection method	Hot wire semiconductor
Power supply	2 x AA type batteries (up to 12 hrs.)

ePACT controller gas detection system

ePACT Gas Detection Controller

The ePACT Gas Detection Controller is the epitome of flexibility in centralized or decentralized control in industrial safety systems. With its user-friendly interface and intuitive design, it's incredibly easy to configure to meet your specific needs.

This cutting-edge controller offers you full control over your gas detection network, allowing you to monitor and manage gas levels across your facility with ease. Its decentralized architecture means that you can expand your system as your requirements grow, without the hassle of a complete overhaul.

Features

The ePACT Controller consist of easy to use ePACT configuration software to configure the system to your needs

- Designed for small, medium to large size gas detection systems
- Modular set-up for flexible I/O configuration
- Easy expandable via internal I/O modules or remote cabinets
- Expansion and configuration is done in live systems. No need to reboot, no down-time of your safety system
- Full control over the entire system
- The ePACT (Ethernet Programmable Active Configuration Tool) software is equiped with real time visualisation of the gas detection system available via multiple (remote) displays
- Each display can be configured to show dedicated detector signals and will automatically scale to the resolution of your screen
- The ePACT Controller is fully compatible with the SIMS-NX visualisation software for real time and historical sensor data via trendview, eventlog and maps
- Support of SH-WAD, PS-7M and other I/O protocols

Whether you need to enhance safety in a small workspace or a large semiconductor clean room, ePACT grows with your needs. Its modular approach lets you add or remove sensors, alarms, and other components effortlessly.

With ePACT, you have the power to customize your gas detection system for optimal safety and efficiency. Experience the peace of mind that comes with having full control at your fingertips, knowing that your gas detection system is tailored to your unique requirements.

Detectable Gases

, ·

·

,

Gas Formula	Target Gas	F*	P*
2NTe	2NTe	х	
AN	Acrylonitrile	х	
AsH ₃	Arsine	х	х
B_2H_6	Diborane	х	х
BBr ₃	Boron Bromide	х	
BCI ₃	Boron Trichloride	х	
BF ₃	Boron Trifluoride	х	
Br ₂	Bromine	х	
C2F6	Hexafluoroethane	х	
C,H,	Acetylene	х	
C ₂ H ₂ Cl ₂	1,2-Dichloroethylene (1,2-DCE)	x	
$C_2H_2F_4$	1,1,1,2-Tetrafluoroethane (R-134a, HFC-134a)	x	
C ₂ H ₃ CI	VCM	х	
C ₂ H ₄	Ethylene	х	
$C_2H_4Cl_2$	Ethylene Dichloride (EDC)	х	
C ₂ H ₅ OH	Ethanol (Anhydrous)	х	
C ₂ H ₇ N	Dimethylamine (DMA)	х	
C ₂ H ₈ N ₂	Ethylenediamine	х	
C ₃ H ₁₀ Si	Trimethylsilane (3MS)	х	
$C_3H_2CIF_5O$	Isoflurane	х	
C3H6	Propylene	х	
C ₃ H ₈	Propane	х	
C ₃ H ₄ BO ₃	Trimethyl Borate (TMB)	х	
C ₄ F ₆	Hexafluorobutadiene	х	
C ₄ F ₈	Octafluorocyclobutane	х	
C,F,OCH,	HFE71DA	х	
C,H,	Butadiene	х	
C,H,NO	Dimethylacetamide (DMAC)	x	
C.F.	Octafluorocyclopentene	x	
C.H.	Hexane	×	
C H	Benzene	x	
C H	Toluene	×	
C H (BCHD)	2.5-Norbornadiene (BCHD)	X	
С.Н.	Octane	X	
C ₈ H ₂₄ N ₄ Ti	Tetrakis(dimethylamido) titanium (TDMAT)	x	
CF4	Carbon tetrafluoride	х	
$\mathrm{CH_2CI_2}$	Dichloromethane	х	
CH ₂ F ₂	Difluoromethane (R-32, HFC-32)	х	
CH ₂ O ₂	Formic Acid	х	
CH ₃ CI	Methyl Chloride	х	
CH ₃ CN	Acetonitrile	х	
СН₃СООН	Acetic Acid	х	
CH ₃ F	Methyl flouride (R-41)	х	
CH,OH	Methanol	х	
CH.	Methane	X	
4 CH.S	Methyl Mercantan	X	
CH Si	Methyl Mercaptan	×	
CHCI	Chloroform	×	
CHE	Triffuoromethane (0.00)	~	
5111 ₃	milliorometriane (R-23)	X	

Gas Formula	Target Gas	F*	P*
CI ₂	Chlorine	Х	Х
CIF ₃	Chlorine Trifluoride	х	х
со	Carbon Monoxide	х	х
CO ₂	Carbon Dioxide	х	
COCI2	Phosgene	х	
cos	Carbonyl Sulfide X		
F,	Fluorine	х	х
Ge,He	Digermane	х	
GeH,	Germane	х	х
ч.	Hydrogen	x	
4.S	Hydrogen Sulfide	x	x
2 H Se	Hydrogen Selenide	x	x
HBr	Hydrogen Bromide	x	x
HOEC	Phosphorus Trifluoride	~ V	^
	Formaldohydo	~	
	Hudrogon Chlarida	×	v
	Hydrogen Chioriae	X	X
HGN	Hydrogen Cyanide	X	
	Hydrogen Fluoride	X	х
HNO ₃	Nítric Acid	X	
2	lodine	х	
-C ₄ H ₁₀	Isobutane	Х	
PA	Isopropyl Alcohol	х	
LTO520	LTO520	х	
N ₂ H ₄	Hydrazine	х	
N ₂ O	Nitrous Oxide	х	
NF ₃	Nitrogen Trifluoride	х	х
NH ₃	Ammonia	х	х
NMP	N-Methylpyrrolidone	х	
NO	Nitric Oxide	х	х
NO ₂	Nitrogen Dioxide	х	х
0 ₂	Oxygen	х	
O ₃	Ozone	х	х
PF ₃	Phosphorus Trifluoride	х	х
PH ₃	Phosphine	х	х
POCI ₃	Phosphorus Oxychloride	х	
SF ₆	Sulphur Hexafluoride	х	
Si ₂ Cl ₆	Hexachlorodisilane	х	
Si ₂ H ₈	Disilane	х	х
SiCl	Tetrachlorosilane	х	
SiH,Cl,	Dichlorosilane (DCS)	х	х
SiH,	Silane	х	х
SiHCI.	Trichlorosilane	×	
50	Sulphur Dioxide	x	х
TEOS	Tetraethyl Silicate	x	^
/00	Volatile Organic	^	
	Compounds	х	
WF ₆	Tungsten hexafluoride	х	
XeF,	Xenon Difluoride	х	

* F = Fixed Detectors

* P = Portable detector XPS-7 II

Software for PLC Alarm System

SIMS-NX Software

Imagine a cutting-edge gas detection system that provides real-time safety assurance. This system employs state-of-the-art sensors and advanced analytics to continuously monitor the environment for any gas leaks or hazardous levels. Instant alerts and precise location information enable swift response, ensuring the safety of personnel and the environment. With its user-friendly interface, this system empowers you to visualize real-time and historical gas concentration data effortlessly, granting you peace of mind and proactive control over potentially dangerous situations.

ePACT Software

The ePACT gas detection controller configuration tool is a versatile embedded software solution designed for efficient configuration and management of gas detection systems. This user-friendly tool not only streamlines setup but also offers real-time visualization, allowing users to monitor gas levels and system performance in real-time. It's an essential tool for ensuring safety and precision in gas detection applications. It can work side by side with the SIMS-NX software.

In control Software

With In control software the configuring of the SH-WAD series gas detectors is simple. It will give you full control of your gas detector. When installing a gas sensor, parameters such as target gas, measurement range and measurement unit are all set automatically. The user only has to specify the alarm values and the desired alarm responses. Historical data stored in the detector for in depth analysis also becomes available with In control software.

NEW COSMOS ELECTRIC CO..LTD.

Japan (Headquarters)

Tokyo 105-0013 Japan

Europe

The Netherlands www.newcosmos-europe.com

China

4th Plant No.385, Dongxing Road, Songjiang Industrial Zone, Shanghai, China 201613

Korea

Jeongja-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea 463843

Taiwan

Gongdao 5th Road,

202310V8